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Deflated regime for pressurized ring polymers with long-range interactions
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Two-dimensional vesicles subject to osmotic pressure imbalance may be modeled as unrestricted ran-
dom rings. Assuming a pressure that couples to the square of the oriented area we are able to obtain an
exactly solvable model that accommodates the deflated regime corresponding to a shriveled vesicle.
Moreover, we investigated the effects of a long-range repulsive, nonlocal interaction among monomers
by employing a variational approach. We find good agreement between our analytical predictions and

Monte Carlo simulation results.

PACS number(s): 87.15.He, 05.40.+j

Recently there has been considerable interest in under-
standing the behavior of vesicles [1] as a prototype of
more general systems such as interfaces, membranes, and
random surface [2,3]. Real vesicles, e.g., red blood cells,
exhibit a variety of well-defined but fluctuating shapes
[4].

Even in two dimensions the behavior is very rich,
characterized by continuously variable fractal shapes,
several universalities classes, including self-avoiding
walks and branched polymers, and a dynamical phenom-
ena such as flicker. An internal pressure increment &p
acts on the vesicle controlling the internal area of the
vesicle. When &p >0 the vesicle becomes circular. On
the much richer deflated regime (8p <0), numerical
simulations have suggested that the vesicles collapse to
form a branched polymer [1,5-7].

Recently, Rudnick and Gaspari (RG) [8] introduced a
simple exactly solvable model for the study of vesicles in
the inflated regime (&p >0). Omitting excluded volume
effects, they consider a pressure that favors an oriented
area, thus excluding the possible study of the deflated re-
gime. Our focus is on modifying their approach to make
this interesting regime accessible. Specifically, employing
a pressure that couples to the square of the algebraic area
(or its modulus), we obtain an analytically tractable mod-
el that yields the scaling behavior in the deflated regime
exactly. As we checked numerically, this choice, al-
though dictated by mathematical convenience, does not
alter the asymptotic behavior that one would observe in
the presence of a pressure coupled to the modulus of the
oriented area. Further, the effects of the long-range
repulsive interactions are treated variationally leading to
nonuniversal behavior. Monte Carlo simulations have
been carried out to confirm the prediction.

The model is described by the following Hamiltonian:

N N
H=a 3 (R, ;—R)*+1 3’ U(R,—R))+V,., ,
i=1 hj=1

(D

47

where U(x)~x ~*/? for large x is the long-range two-

body interaction acting among the nodes of the ring
placed at positions R; (with the cyclic condition
R;=R,; . y)andi=1,2,...,N. The prime in the second
sum means that i =j is excluded. Long-range forces
have been introduced in the context of critical phenome-
na for a vector spin model in Ref. [9]. Our case corre-
sponds to the zero component limit, when the pressure is
absent [10]. Moreover, the excluded-volume interaction
8%R; —R;) corresponds to the choice A=d, as discussed
in Ref. [11], whereas A= —2 to the Gaussian case.

The first term in Eq. (1) is the standard elastic energy
[12] while the last term represents the energy contribu-
tion coming from the pressure imbalance. Equation (1)
reduces to the RG case in the absence of the long-range
potential with V, . =p A, and the algebraic area 4 given
by

N
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where R, lie in the xy plane and Z is the unit normal to
the plane. Independent of the sign of p, this model favors
inflated configurations and it is characterized by an insta-
bility for |p| > p, [8]

In order to analyze the interesting deflated regime of
the vesicle we have considered the two cases

Varea =PA 2
=pld]|. A3)

The first case can be solved exactly when long-range
forces are absent, whereas the second cannot. Although
the latter case is closer to physical reality [1,6], our varia-
tional calculations indicate no substantial qualitative
difference. We will therefore present details only for the
former.

In the absence of long-range interactions using the
Hubbard-Stratonovich transformation we can rewrite the
partition function as
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where H, contains the elastic term and V., is now ig 4.
d[R] indicates the integration over all R;’s with the con-
straint that the center of mass is fixed at the origin and
kg T has been adsorbed in the coupling constants. Since
H is quadratic, the integration over the R;’s can be easi-
ly done, while the integration over g is done using saddle
point, yielding for the free-energy density
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where an irrelevant constant has been omitted,
¢ =4a(l—cosk) and k=2mn /N with

n=12,...,(N—1).

The minimum in Eq. (5) occurs at g =0. The leading
order in the asymptotic behavior of the averaged squared
area and radius of gyration R? is obtained by saddle-
point corrections in Eq. (4) expanding about k =0 and
extending the sum over n =Nk /21 to n = 0. The results
are
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Thus the radius of gyration is almost insensitive to the
“pressure,” whereas the area fluctuations are finite when
p is fixed [see Eq. (6)]. On the other hand, { 4%2) ~(R?)?
where p =0. When self-intersections are forbidden, the
area (A) is proportional to the radius of gyration
[1,5,6], but as soon as p >0 the universality class changes,
(A)~Nand (R?)~N?, where v=0.64 is the branched
polymer v exponent [1,6].

We now consider the long-range interaction U. It is
known [11,13] that in the absence of pressure imbalance,
the Hartree approximation predicts a nontrivial asymp-
totic behavior for v=max(2/A,2/d) in dimension d,
where 2 <A <4 and d <4. It has been conjectured [13,14]
that when 2<A <4,d, the result v=2/A is exact when
this ratio exceeds the exponent corresponding to the
short-range repulsion vgg. In d =2, vgg =2 [15], imply-
ing that v=2/A when 2<A<$%. We have applied the
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Hartree approximation for A within this range when V.,
is present and compared our results with Monte Carlo
simulations for the A=2.5 case.

The Hartree or Gaussian variational approach is based
on the well-known Gibbs inequality for the free energy
f<fi+{(H—H,),/N, where H, is a trial Hamiltonian,
(), indicates the thermal average performed with the
Boltzmann weight exp(—H,), and f, is the correspond-
ing free energy. In terms of the Fourier transform of R;’s
defined as

R, =—— ‘kij (10)

||M2

(R, =0 since the center of mass is fixed at the origin), we
choose

Hl:%zckﬁkﬁ—k‘*—Varea ’ (11)
k

i.e.,, a Gaussian trial Hamiltonian plus a pressure term.
It is extremely important to retain the pressure term in
the trial Hamiltonian in order to recover the exact
answer in the U—O limit. The best choice of f is ob-
tained by minimizing

fa=fit (H=H), (12)

with respect to the ¢;’s where f, is given by Eq. (5) and
the second term in Eq. (12) is given by

1 . _ _Af
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Here, we have made use of the identity
3
L(rRE_,),=2 /i
N aCk

In order to evaluate the last term in Eq. (13) it is con-
venient to introduce the probability density for
(R;—R;),P;(R)=(8(R—R;+R;)),.  Since the
minimum in Eq. (5) occurs at g =0, within the saddle-
point approximation, using the Fourier representation for
the 8 function, we easily find

— 2
Py(R)=(2md,_p)~e (142)
where
Ajz%((Ro—RjV):Z%[1—COS(k]')]?1k‘ (14b)

Thus we obtain the following expression for the last term
in Eq. (13):

2(U(R —R;)

=130 (15)
J

with the definition
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U(a;)= [d?RP,;  (R)UR?)
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Using Egs. (12)-(16) the variational equation
df g /9c;, =0 is equivalent to the self-consistent equation:

al0(a))
¢ =4a(l—cosk)+ ¥ [1—cos(kj)]——— (17)
j 94;
(see also Sec. IV of [11]). Before discussing the solution
of Eq. (17), let us calculate the averages of squared area
and radius of gyration. From the relation
( A%?)=3(Nfy)/dp and from the definition (7) of (R?)
we get again

(4%),_
(4y=———"20 (18a)
1+2p(A4%), -,
as in Eq. (6), but with
.2
(A7), _o=43 STk (18b)
kK Ck
and
2 Ck
(R?)== —_—, (19)
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where (g2)=2p/(1+2p{A4*),_;) comes from the
saddle-point approximation when N is large. In the ab-
sence of a long-range potential Eq. (17) gives the (obvi-
ous) exact result ¢, =4a(l—cosk), which inserted into
Egs. (18) and (19) reproduces the results (6)—(9). When
U(x)~x"*? for x >>1, Eq. (17) can be solved for the
leading behaviors of ¢, at low k, which is the one of in-
terest for the large-scale behavior in Egs. (18) and (19).
The analysis in Ref. [11] readily applies to Eq. (17) giving

¢y ~Ck?tl y=2/), (20)

and A > 2 (see also Ref. [11]). The constant C can be cal-
culated from Eq. (17) using the ansatz (20), but its specific
value is not of interest here (see, however, Ref. [11]).
From Eq. (18b) one finally obtains

(A%),—o=A4,N*", 21

where A,=4£(4v)/C*2m)* and ¢ is the Riemann’s
function. Equation (19) gives

(R?)=N>G(p{4?),-o) , (22)

where G (x) is a bounded function always of order O(x°).
Thus at p =0 we again obtain that { 4%),_,~(R?*);_,,
as in the absence of a long-range potential. We tested our
findings by Monte Carlo simulations for several values of
p and N and A=2.5. The technique is quite standard [16]
(see also [14]).

In Figs. 1(a) and 1(b) (R2)N " and ( 4%),_,/( 4%),
are plotted versus the scaling variable x =p{ 4?), _,, re-
spectively. The exponent v, which we have used, has
been obtained for p =0 and the best fit is shown in Fig. 2
with the result

v=0.8+0.05 , (23)
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FIG. 1. (a) The reduced radius of gyration (R2)N ™% is
plotted as a function of the scaling variable x=p{ 42),_, for
the following cases: N =10 (crosses); N =20 (diamonds), N =40
(squares), N =60 (stars); N =100 (crosses with holes). (b)
(A?%),-0/{ A?), plotted vs the scaling variable x, for different
choices of N as in (a). The dashed line represents the scaling
function (1+2x).
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FIG. 2. Log-log plot of the quadratic area { 42), calculated
at p =0, against N. The dashed line shows the slope corre-
sponding to the exponent v=0.8.
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which must be compared with the variational estimate
v=2/A=0.8 of Eq. (20). The dashed line in Fig. 1(b)
represents the scaling function (1+2x) as we obtained
from our variational calculation in Eq. (18a). The agree-
ment is quite surprising in view of the rather simple ap-
proximations employed.

Better results may be obtained with a cleverer choice
for the trial Hamiltonian than the one made in Eq. (11).
In particular, one should take into account that even in
the absence of a pressure term in Eq. (1), the long-range
potential generates an effective pressure imbalance that
one should incorporate in H,.

In conclusion, we have introduced an alternative exact-
ly solvable model for self-intersecting rings with a pres-
sure imbalance coupled to the square of the algebraic
area. This allows us to investigate the deflated regime,

which was inaccessible to previous studies of related
models [8], and there are no unphysical instabilities. The
introduction of a long-range potential for monomer in-
teraction is treated in the variational framework of the
Hartree approximation as in Refs. [11] and [13]. Results
from numerical simulations compare rather well with the
analytical predictions and in particular the scaling vari-
able p( 4%) p=0 turns out to be the correct choice. The
radius of gyration is found to be insensitive to pressure
imbalance and is universal in the entire p > 0 region.
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